Supercyclicity of Multiple Weighted Composition Operators

نویسندگان

  • Bahmann Yousefi
  • B. Yousefi
چکیده

Let H be a Hilbert space of functions analytic on a plane domain G such that for each λ in G the linear functional of evaluation at λ given by f −→ f(λ) is a bounded linear functional on H . By the Riesz representation theorem there is a vector Kλ in H such that f(λ) =< f,Kλ >. Let T = (T1, T2) be the pair of commutative bounded linear operators T1 and T2 acting on H . Put F = {T1T2 : m,n ≥ 0}. For x ∈ H , the orbit of x under T is the set orb(T, x) = {Sx : S ∈ F}. The vector x is called hypercyclic for T if orb(T, x) is dense in H . Also, the vector x is called supercyclic for T if Corb(T, x) is dense in H . Supercyclicity was introduced by Hilden and Wallen ([1]). They showed that all unilateral backward weighted shifts are supercyclic, but there is no vector that is supercyclic vector for all the unilateral backward weighted shifts. H. Salas ([2]) give a condition for supercyclicity in Frechet spaces which is called the Supercyclicity Criterion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Weighted composition operators on measurable differential‎ ‎form spaces

In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010